Metallic Nanobowls: Metallic Nanobowls by Galvanic Replacement Reaction on Heterodimeric Nanoparticles (Small 5/2012)

نویسندگان
چکیده

منابع مشابه

Metallic nanobowls by galvanic replacement reaction on heterodimeric nanoparticles.

Well-defined metallic nanobowls can be prepared by extending the concept of a protecting group to colloidal synthesis. Magnetic nanoparticles are employed as "protecting groups" during the galvanic replacement of silver with gold. The replacement reaction is accompanied by spontantous dissociation of the protecting groups, leaving behind metallic nanobowls.

متن کامل

Bulk metallic glass-like scattering signal in small metallic nanoparticles.

The atomic structure of Ni-Pd nanoparticles has been studied using atomic pair distribution function (PDF) analysis of X-ray total scattering data and with transmission electron microscopy (TEM). Larger nanoparticles have PDFs corresponding to the bulk face-centered cubic packing. However, the smallest nanoparticles have PDFs that strongly resemble those obtained from bulk metallic glasses (BMG...

متن کامل

Virus templated metallic nanoparticles.

Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subseq...

متن کامل

Mesoporous metallic rhodium nanoparticles

Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relativ...

متن کامل

Fundamental limits to extinction by metallic nanoparticles.

We show that there are shape-independent upper bounds to the extinction cross section per unit volume of dilute, randomly arranged nanoparticles, given only material permittivity. Underlying the limits are restrictive sum rules that constrain the distribution of quasistatic eigenvalues. Surprisingly, optimally designed spheroids, with only a single quasistatic degree of freedom, reach the upper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Small

سال: 2012

ISSN: 1613-6810

DOI: 10.1002/smll.201290033